图7.不同类型电源模块的内部组成。在这两种情况下,电感器均位于IC晶片的顶部。
因此,在采用降压转换器或降压电源模块进行设计时,如何放置输入电容器应该是首要考虑因素之一。电源模块还具有以下优点:电感器和IC之间的关键环路面积已经过优化。电感器在封装内部与集成电路连接(见图7)。这种放置方式会在封装内部形成一个较小的环路区域。因此,不必将噪声开关节点布线在印刷电路板上。
电源模块中屏蔽了其中的大多数电感器,以防止来自线圈的电磁辐射。在非常靠近电感器的地方会发生高电流电压转换,并且开关节点的一部分电磁场受到屏蔽,电感器位于引线框架的顶部(见图7)。
快速的电压和电流瞬变
快速瞬变会导致开关节点发生振铃,从而产生EMI。在某些情况下,转换器可连接至启动引脚。将一个电阻器与启动电容器串联放置会增加上升时间(dt),在降低EMI的同时损失了效率。
图8.将启动电阻器添加到LMR23630转换器开关节点的影响。EMI辐射较低,但由于开关损耗较高,因此效率有所降低。
图8显示了LMR23630 EVM的EMI辐射扫描。对布局进行更改后,将输入电容器放在距引脚约2.5厘米远的位置,以模拟不良布局,并展示启动电容器的放置将如何影响EMI特性。在设计中多放一个启动电容器可能比完全改变布局更容易。建议您在设计时始终将启动电容器考虑进去,以备不时之需。如果没有,您可以使用0Ω电阻器来减少PCB上的空间。
将启动电阻器与启动电容器串联可以降低EMI频谱。某些频率范围中的发射会降低达6dB。图8还显示了效率平衡情况。使用30.1Ω的电阻器缩短上升时间dt,从而将效率降低1%以上。
看一下功率损耗就更能说明这一点。满载(3A)的功率损耗从1.9W增加到2.1W。功率损耗超过10%时,可能会导致散热问题。
在开关节点引脚和接地引脚之间放置一个小型肖特基二极管可以降低反向恢复电流,从而降低同步转换器中的开关节点电流振铃dI,但这样会提高物料清单(BOM)成本。或者,您可以添加一个缓冲网络,其中包含一个位于开关节点与接地之间的额外的大封装电容和电阻。缓冲器可消耗开关节点振铃的能量,但需要知道附加组件的振铃频率和正确计算。这种方法同样会降低开关电源的效率。
电流路径中的寄生电感和电容
对于同步降压转换器,每个IC架构会产生不同强度的噪声,表现为EMI辐射。但很难从数据表中找到这一项。大多数数据表都没有提供EMI图,因为PCB布局、BOM组件和其他因素会对EMI特性产生影响。幸运的话,EVM用户指南会提供此特定设计的EMI特性图。但如果您的设计与EVM的布局和BOM不匹配,您所设计的应用的EMI特性可能会有很大差异。电源模块简化了布局,实现了快速简便的设计,因为您只需要考虑一些经验法则。例如,尽量减少接地平面中的迹线或切口数量;必要时,将其设计为与电流方向保持平行(图9)。
图9.PCB中的切口和迹线会影响电流,因此也会影响辐射EMI。
保护噪声敏感节点免受噪声节点的影响
尽可能缩短噪声敏感节点,并远离噪声节点。例如,从电阻分压网络到反馈(FB)引脚的长迹线可以充当天线并捕获电磁辐射干扰的噪声(图10)。这种噪声会被引入FB引脚,致使输出端产生额外的噪声,甚至使器件不稳定。在设计开关降压调节器的布局时,将这一切都考虑在内是一个挑战。
噪声敏感节点噪声节点
反馈引脚开关节点
频率设定电感器
补偿网络高dI/dt电容器
传感路径等FET、二极管等
表1.降压转换器中噪声敏感节点和噪声节点的示例。
图10.始终将FB引脚上的电阻分压器尽可能靠近FB引脚放置。
模块的优势在于将噪声敏感节点和噪声节点保持在最低限度,从而最大限度地减小错误布局的几率。唯一要注意的是保持FB引脚的迹线尽可能短。
结论
在开关降压转换器中有许多用来调节EMI的旋钮,但用来实现最佳方案可能还不够方便。找到最佳配置会花费大量宝贵的设计时间。电源模块早已包括FET和电感器,这就使得创建和完成具有良好EMI特性的电源设计变得简单而又快捷。使用降压模块进行设计时最关键的一点是一些外部元件的放置方式,这有助于显着提高EMI特性。
转换器和电源模块的EMI比较
前文说明了开关电源中EMI的以及如何降低EMI。现在,本文将通过比较转换器和使用相同集成电路(IC)的电源模块之间的测量结果,来演示模块如何帮助减轻EMI辐射。两者均来自TI的SIMPLE SWITCHER产品线,转换器为LMR23630,电源模块为LMZM33603 ,采用LMR23630 IC。通过对两个器件的EVM做部分更改,以获得相同的BOM数,因此结果仅取决于所选部件(转换器或电源模块)和布局。两种EVM均具有良好的优化布局。之后,将电容器放置在远离输入引脚的位置,就生成了不良布局。容-源-电-子-网-为你提供技术支持
本文地址:http://www.dziuu.com/dz/23/15440578132698.shtml
本文标签:
猜你感兴趣:
​YSO690PR稳定可靠的低抖动石英可编程晶振,确保可见光红外模块应用在各种环境和条件下都能提供出色的性能和精确的频率输出。让QMEMS振荡器YSO690PR成为交换机、对讲机、充电桩、打印机等行业的理想选择!
关键词: 所属栏目:电子基础
关键词: 所属栏目:元器件知识
深圳市永阜康科技有限公司现在大力推广一颗内置PD3.0/QC3.0等主流快充协议、3-6多节锂电池移动电源双向100W快充IC-M12266,配合极简的外围电路,即可实现常见便携电子设备的Type-C快充需求。
关键词: 所属栏目:电源电路
现在市场上一般采用升降压型充电管理芯片+快充协议芯片来实现,应用设计及外围比较复杂。深圳市永阜康科技有限公司现在大力推广一颗内置PD3.0/QC3.0快充协议升降压型35W两节锂电充放电SOC芯片-M12229,输入电压3.3V-20V,最大充电电流5A,最大输入/输出功率35W,适用于双节串联大容量锂电池的快速充电场合。
关键词: 所属栏目:电源电路
深圳市永阜康科技有限公司现在顺势推广一颗支持PD3.1/QC3.0等主流快充协议、3-8节升降压型140W锂电充放电管理SOC-M12269。
关键词: 所属栏目:电源电路
导热绝缘片是一种以特殊薄膜为基材的高性能弹性绝缘材料,主要安装在发热界面与其组件的空隙处。而电源电子由电源主芯片、变压器、MOS管、PCB板,电阻电容等多个部件共同组成,在运作过程会散发出较大热量,因此要选择合适的导热界面材料来降低热量以保持产品的正常运作。
关键词: 所属栏目:电源电路
关键词: 所属栏目:电源电路
关键词: 所属栏目:开关电源电路图
PW5100 的工作频率高达 1.2MHz,其目的是为了能够减小外部的电感尺寸和输出电容容值,故 PW5100 只需要 1uH 以上的电感就可以保证正常工作,
但是输出端如果需要输出大电流负载(例如:输出电流大于 200mA),为了提高工作效率,建议使用较大一点的电感。
同时轻载应用,输出电流10M,50MA左右时,建议使用大的的电感如6.8UH。
关键词: 所属栏目:电子器材
在主板和散热片之间使用导热硅脂或导热凝胶来传导热量,能提升无人机整体的可靠性。为了满足云台的散热,通过散热、硬件、结构工程师的精心设计,可以应用导热硅胶片让HDR拍摄功能下绚丽高清的图像免受燥热的画质损失。
关键词: 所属栏目:其他文章
关键词: 所属栏目:开关电源电路图
关键词: 所属栏目:开关电源电路图
关键词: 所属栏目:开关电源电路图
关键词: 所属栏目:开关电源电路图
功率放大电路中的前置放大器,一般都采用双电源供电,即对称的正负电源供电。业余制作时,会碰到手头无双电源的情况,这就给制作带来困难。本例介绍利用TDA2030将单电源转换为双电源给前
关键词: 所属栏目:电路图
该高压电源可以使日光灯在12V电压下工作,即使该灯管的灯丝有缺陷。本质上它是个用于激励自制自偶变压器的振荡器。T1层绕在一根直径5/16、长17/8的铁氧体磁棒上。S2是一种选择性的灯丝开关
关键词: 所属栏目:电路图
T1是一个60赫兹的120伏到1000伏升压变压器。C1, C2, C3, C4, D2通过D5形成一个四倍电压。最初的电压是4到5千伏,当激光管发光时电压下降。 :
关键词: 所属栏目:电路图
由无源线性集成电路稳压器组成的电源能够提供+12, +9, +5, -5, -9和-12伏的直流电。T1和T2是12伏,3安的变压器。 :
关键词: 所属栏目:电路图
吸波材料电磁兼容也简称为:EMC,一般应用在:柔性线路板、印刷电路板、芯片、PCMCIA卡等电子元件产生辐射噪声的控制、集成电路、液晶显示器组件的电磁吸收,以及在电缆中、RFID中起到抗干扰的作用。
关键词: 所属栏目:其他文章
远程控制电源开关:不受距离以及空间的限制,可以在手机上对电源开关进行控制,使用远程控制开关就可以实现的。远程控制开关:只要有4G信号的地方,可以不受距离限制,控制
关键词: 所属栏目:开关电源电路图